Authors: Jharna Majumdar, Sneha Naraseeyappa and Shilpa Ankalaki

 

Journal of Big Data
 
Publisher: SpringerOpen
 
Abstract
 
In agriculture sector where farmers and agribusinesses have to make innumerable decisions every day and intricate complexities involves the various factors influencing them. An essential issue for agricultural planning intention is the accurate yield estimation for the numerous crops involved in the planning. Data mining techniques are necessary approach for accomplishing practical and effective solutions for this problem. Agriculture has been an obvious target for big data. Environmental conditions, variability in soil, input levels, combinations and commodity prices have made it all the more relevant for farmers to use information and get help to make critical farming decisions.
 
This paper focuses on the analysis of the agriculture data and finding optimal parameters to maximize the crop production using data mining techniques like PAM, CLARA, DBSCAN and Multiple Linear Regression. Mining the large amount of existing crop, soil and climatic data, and analysing new, non-experimental data optimizes the production and makes agriculture more resilient to climatic change.
 
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Illustration Photo: wheat field (Public Domain from Pixabay.com)

Comments

No comments to display.