EU Call for Proposals: Develop adequate computational systems for modelling the design, start-up, scaling-up and continuous improvement of bioprocesses involving microorganisms

Develop modelling systems that contain experimental multi-omics data on microbial responses to conditions in large fermenters and that combine know-how of metabolic networks and large-scale fluid dynamics into an integral, computation-driven framework to help in the design, scale-up and start-up of bioprocesses.
Applications are closed
10 months ago

The state-of-the-art approach to designing, scaling up and starting up bioprocesses is governed by ‘trial and error’ and replicating traditional manufacturing methods. These methods often cause scaling-up losses and start-up delays or failures. There are many variables that have an impact on the design and scaling-up of bioprocesses, making this a very complex exercise. Among the major causes of these variables are:

  • an increasingly wider range of biomass feedstock and their varied and heterogeneous composition; and
  • revolutionary developments in molecular biology producing more efficient microorganisms that can create a wider range of bio-products.

Both developments demand reliable modelling systems to cope with many variables in simulating the full value chain, from feedstock to products, in search of the most effective combinations.

The design phase should be long enough and have sufficient tools available to test different and radical concepts. And ultimately, in the scaled-up and (semi-)commercial operating phase, there should be guidelines for continuous improvement cycles.

Today’s methods for scaling-up often take a more limited view and do not look at the bigger picture, so that optimisation takes place at lab level, not at plant operation level.

Industry needs reliable modelling approaches, able to predict entire pathways from feedstock and energy intake to product output. This may mean designing tailor-made paths for each specific feedstock, from its intake and preparation, through the processing steps to the end-products.

Recent developments in computation-driven frameworks can help cope with many variables in designing optimal feedstock-organisms-bioprocess configurations and simulating scaling-up. These computation approaches are already standard in fields other than microbial technology and industrial biotechnology.

The specific challenge of this topic is to design and apply reliable and robust computational modelling approaches for bioprocesses.


Develop modelling systems that contain experimental multi-omics data on microbial responses to conditions in large fermenters and that combine know-how of metabolic networks and large-scale fluid dynamics into an integral, computation-driven framework to help in the design, scale-up and start-up of bioprocesses.

The modelling approach should specify the ‘optimal’ use of the selected biomass, in terms of the environmental, economic and social sustainability of the value chain, and the resulting savings in cost and time during scaling-up and start-up. Proposals should therefore be developed in partnership with the operator of a (pre-)commercial-scale biorefinery or a pilot or demonstration plant, who should validate the results.

To achieve a fair assessment, adequate metrics will be needed to compare the results of modelling from different perspectives. The models should also make connectivity to Industry 4.0 and The Internet of Things possible for future use in a complete value chain.

Proposals should simulate a selected specific biomass feedstock and associated processing steps yielding targeted intermediary products.

Proposals may include different processing routes for the selected feedstock to show how the developed models may be replicated, scaled up and used in different value chains. This experimental validation should also include a sensitivity analysis to assess the models’ ability to cope with disruptions and non-uniform reaction mixtures. The validation should also specify all included assumptions and should yield information to quantify sensitivity and uncertainties alike.

The industry should actively participate to demonstrate the potential for integrating the developed concepts into current industrial landscapes or existing plants so that the concepts can be deployed more quickly and scaled up to apply industrial-wide.

Proposals should specifically demonstrate the benefits versus the state-of-the-art and existing technologies. This could be done by providing evidence of new processing solutions and new products obtained.

The technology readiness level (TRL)1 at the end of the project should be at least 3 for the bio-based value chain in question. Proposals should clearly state the starting TRL, which may be as low as 1 or 2.

Proposals should seek complementarity with projects funded under Horizon 2020 to avoid overlap, promote synergies and advance beyond the state-of-the-art.

Dateline for submission: 6 September 2018 17:00:00 (Brussels time)
Source: European Commission

Illustration Photo: Bacteria to fight tooth decay (credits: BASF / Flickr Creative Commons Attribution-NonCommercial-NoDerivs 2.0 Generic (CC BY-NC-ND 2.0))

Read more


No comments to display.

Related posts

Call for Applications: Go Ignite Global Call

Start-ups working on solutions in IoT, Big Data Analytics, Cyber Security, Artificial Intelligence, 5G and Customer Experience Enhancement are encouraged to apply.
Application Deadline in 11 days

EU's Call for Proposals: Digital technologies for improved performance in cognitive production plants

Proposals need to develop new technologies to realise cognitive production plants, with improved efficiency and sustainability, by use of smart and networked sensor technologies, intelligent handling and online evaluation of various forms of data streams as well as new methods for self-organizing processes and process chains.
Application Deadline in 4 days

Increased Consumption of Plant-Based Protein Diets to Mitigate the Incidence of Type 2 Diabetes

The < a href = "">wheat protein market</a> is estimated at USD 2.04 Billion in 2017 and is projected to reach USD 2.58 Billion by 2022, at a CAGR of 4.8% from 2017. The wheat protein market has been largely driven by the growing demand for bakery products, the increasing popularity of plant-based foods, wheat protein being a suitable alternative for non-animal protein among vegans coupled with nutritional benefits for lactose-intolerant consumers.

Increase in Use of Crop Protection Products in Developing Countries Drives the Pesticide Inert Ingredients Market

The pesticide inert ingredients market is projected to reach USD 4.7 billion by 2023, from USD 3.5 billion in 2018, at a CAGR of 6.14% during the forecast period. The market is driven by factors such as the increasing demand for specific inert ingredients in pesticide formulation and capability of inert ingredients to improve the efficacy of pesticide application.

Pilot plant to turn sugarcane waste into biofuel and beer bottles

Their patented REACH technology, developed by US parent company Mercurius Biorefining, has the potential to convert sugarcane bagasse and other biomass into cost effective drop-in biofuels and bio-chemicals , as alternatives to fossil fuels.

Call for applications: The Entrepreneurship World Cup

The Entrepreneurship World Cup is more than just a global pitch competition with a shot at life-changing prizes. With 100,000 entrants from around the world, EWC elevates entrepreneurs – providing you with tools and resources to grow your venture. It doesn’t matter how far you’ve come – idea-stage, early-stage, growth-stage or beyond – EWC can put you on the right course. Leverage world-class content in the EWC Accelerator to: unleash your ideas, hone your pitching skills and engage with a global network of mentors. And, oh yeah, compete for those life-changing prizes, together with business opportunities and investment.
Application Deadline in 3 months

EU's Call for Proposals: EGNSS applications fostering digitisation

Actions should deliver new innovative applications, with commercial impact and a clear market uptake perspective (a Business Plan is required as part of the proposal). The proposed EGNSS applications may integrate digital technologies like Internet of Things (IoT), cloud computing, big data and robotics.
Application Deadline in 16 days

Growing Farm Labor Issues due to Higher Costs and Availability Drives the Smart Harvest Market Ma

The smart harvest market is projected to reach USD 15.6 billion by 2023, from USD 9.0 billion in 2018, at a CAGR of 11.81% during the forecast period. The market is driven by factors such as growing farm labor issues due to higher costs and availability, and cost efficiency benefits offered by smart harvest systems.

Call for applications: 2019 SEED Awards for Entrepreneurship in Sustainable Development

Are you part of a small and growing eco-inclusive enterprise that continues to deliver environmental, social and economic benefits to your target markets?
Application Deadline in 2 months

Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry

Additive manufacturing is a fabrication technology that is rapidly revolutionizing the manufacturing and construction sectors. In this paper, a review of various prototyping technologies for printing cementitious materials and selected 3D printing techniques are presented in detail.