Producing vaccines without the use of chemicals

Producing vaccines is a tricky task – especially in the case of inactivated vaccines, in which pathogens must be killed without altering their structure. Until now, this task has generally involved the use of toxic chemicals. Now, however, an innovative new technology developed by Fraunhofer researchers – the first solution of its kind – will use electron beams to produce inactivated vaccines quickly, reproducibly and without the use of chemicals.

Vaccinations against polio, diphtheria, whooping cough and tetanus have been on the list of standard infant vaccinations for decades now. Many vaccines are inactivated vaccines - that is to say, the pathogens they contain have been killed so that they can no longer harm the patient. Despite this, the vaccine provokes an immune response: The body detects a foreign intruder and begins to produce antibodies to ward off infection. To produce these vaccines, pathogens are cultivated in large quantities and then killed using toxic chemicals. The most common of these is formaldehyde - heavily diluted so it doesn’t harm the patient when the vaccination is administered. Nevertheless, there are downsides to even this minimal concentration: The toxin must remain in contact with the pathogen for days or even weeks to take effect, which has a negative impact both on the structure of the pathogen and the reproducibility of the vaccine. And in cases that call for speed – flu vaccines for instance – drug manufacturers are obliged to use higher dosages of formaldehyde. The product must then undergo a time-consuming process of filtration to avoid traces of the toxic chemical being left behind in the vaccine.

Electron beams kill harmful pathogens

Now, pharmaceutical companies will be able to produce inactivated vaccines without the slightest trace of toxic chemicals – quickly and reproducibly. The scientists who developed this process see its greatest potential in the production of vaccines that until now were not amenable to the method of chemical inactivation. The technique was developed jointly by researchers at the Fraunhofer Institutes for Cell Therapy and Immunology IZI, Manufacturing Engineering and Automation IPA, Organic Electronics, Electron Beam and Plasma Technology FEP and Interfacial Engineering and Biotechnology IGB. “Instead of using chemicals to inactivate the pathogens, we employ low-energy electron beams,” explains Fraunhofer IPA team leader Martin Thoma. The accelerated electrons break down the DNA of the pathogens either via direct collisions or through the generation of secondary electrons, which subsequently result in single or double strand breaks. In a nutshell, the electrons fragment the pathogens’ DNA while maintaining their external structure. This is important to trigger an effective immune response.

The challenge arises from the fact that the electrons cannot penetrate very deeply into the suspension containing the pathogens - in fact, for an even dose distribution, liquid levels should not exceed 200 micrometers. Because there were no existing technologies capable of meeting these requirements, Fraunhofer IPA developed two new methods from scratch. In the first method, a cylinder is continuously wetted with the pathogen suspension, irradiated, and the inactivated liquid transferred into a sterile vessel. In other words, there are two reservoirs of liquid: one containing the active and one containing the inactive pathogens - connected to one another via a constantly turning cylindrical vessel or tumbler. “It’s a continuous process that can easily be scaled up for the mass production of vaccines,” says Thoma. The second method is more suited to lab-scale applications, in which small quantities of vaccine are produced for research or drug development purposes. In this instance, the solution containing the pathogens is placed in bags, which are then passed through the electron beam using a patented process.

Photo: The research and pilot facility at Fraunhofer IZI. Before it can be used in industrial vaccine production, the dimensions of the system must be reduced to the size of a refrigerator. © Fraunhofer IZI

A collaborative undertaking

This kind of project calls for a range of expertise that is perfectly covered by the four Fraunhofer Institutes involved in the initiative. Researchers at Fraunhofer IZI took responsibility for cultivating the various pathogens – including one for avian flu and one for equine influenza. “Following the irradiation, we also worked with our colleagues at Fraunhofer IGB to determine whether the pathogens had been fully inactivated, thus providing effective vaccine protection,” says Dr. Sebastian Ulbert, head of department at Fraunhofer IZI and the initiator of the project. The expertise in electron beam technology came from researchers at Fraunhofer FEP, who developed a system capable of delivering the low-energy electron beams at precise doses – this is necessary because, while the aim is to reliably inactivate the pathogen, care must also be taken to preserve the pathogen structure so that patients’ immune systems can produce the corresponding antibodies.

The new technology has already been implemented, and not only on the laboratory scale: “In the fall of 2018, a research and pilot facility entered into service here at Fraunhofer IZI. Using our continuous module – the wetted tumbler – we are currently able to produce four liters of vaccine per hour,” says Ulbert. That is not far off industrial scale, given that, for certain vaccines, 15 liters of pathogen suspension can yield a million doses of vaccine.

Discussions are already underway with partners in industry. However, it will be another two to four years before vaccines produced using electron beams can be tested in clinical trials.

Source: Fraunhofer

Read more


No comments to display.

Related posts

Hadron Therapy Industry 2019-2025: Global Size, Share, Emerging Trends, Demand, Revenue and Forecasts Research

Hadron Therapy Industry 2019 Global Market research report studies latest Hadron Therapy industry aspects market size, share, trends, growth, business overview and Hadron Therapy industry scenario during the forecast period (2019-2025).

Acid Catalysts Industry 2019: Global Market Size, Growth, Share, Insights, Supply, Drivers, Demand, Outlook, Trends and Forecasts 2025

A latest report has been added to the wide database of Orian Research Consultant titled “Global Acid Catalysts Market Research Report (2025)” which provides an outlook of current market value, Size, Share, Growth, Trends and Forecast.
3 days ago

Continuous Renal Replacement Therapy Industry 2019 Global Market Size, Share, Growth, Sales and Drivers Analysis Research Report 2025

Continuous Renal Replacement Therapy Industry 2019 Global Market Research report provides information regarding market size, share, trends, growth, cost structure, capacity, and revenue and forecast 2025.

Black Pellets Industry 2019 Global Market Size, Outlook, Demand, Key Manufacturers and 2025 Forecast

A recent market report published on the “Black Pellets Industry” presents an in-depth overview of the Black Pellets industry. Global Black Pellets market research report covers the overview, summary, Black Pellets market dynamics, competitive analysis, and leading player’s various strategies to sustain in the global market. Apart from this, the Black Pellets report also covers detail information about various clients which is the most significant element for the manufacturers.
3 days ago

Call for Applications: Startup World Cup 2019

Startup World Cup ("SWC") offers innovation and entrepreneurship opportunities for startup ecosystems around the world. This platform consists of a global series of startup conferences and competitions that bring together phenomenal startups, VCs, and world-class tech CEOs.
Application Deadline in 2 months

EU Call for Proposals: Information and promotion about the sustainable aspect of rice production

The objective is to highlight the sustainable aspect of rice sector. Rice production in Europe has a particular environmental dimension, being at the heart of the preservation of certain wetlands. Rice cultivation is a sensitive and specific practice at European level, since it is produced in areas where there are few crop alternatives. Its preservation and improvement contribute to the sustainability of rice producing regions, by playing an active role in maintaining rural areas, protecting nature and preserving biodiversity. Actions shall highlight the environmental sustainability of the production, stressing its beneficial role for climate action and the environment.
Application Deadline in 22 days

A low-cost and open-source platform for automated imaging

Remote monitoring of plants using hyperspectral imaging has become an important tool for the study of plant growth, development, and physiology. Many applications are oriented towards use in field environments to enable non-destructive analysis of crop responses due to factors such as drought, nutrient deficiency, and disease, e.g., using tram, drone, or airplane mounted instruments.

Can developing nations compete in a digital world?

People want in on e-commerce for simple reasons - choice, ease, speed, cost, convenience. Yet not everyone benefits equally, especially in least developed countries.