Top Tomatoes Thanks to Mars Missions

The company built an enclosed system in which tomato and pepper plants received doses of 16 different minerals, looking at how the uptake of each mineral correlated with growth.
8 months ago

Next time you eat a tomato or sweet pepper, take a closer look, because there’s a good chance that its healthy appearance is thanks to one of former US President Barack Obama’s speeches and ESA research for sending people on long-duration space missions.

Inspired by an Obama speech in 2010 on human missions to Mars, Dutch company Groen Agro Control started investigating the best way to grow and fertilise plants in space, and whether that could also lead to improving the growth of vegetables on Earth.

“In space, you can fertilise plants only with the minerals you take with you, but you still want them to produce the best possible crops,” explains the company’s Lex de Boer.

“Ideally, you would also use the water that evaporates from the plants as a source of drinking water, with the minimum amount of purification. That means you have to apply doses of each mineral extremely carefully, so that as little as possible ends up unused in the drain water.”

To study this, the company built an enclosed system in which tomato and pepper plants received doses of 16 different minerals, looking at how the uptake of each mineral correlated with growth.

In 2013, the company met an ESA team at the Space-MATCH event organised by Netherlands Organisation for Applied Scientific Research TNO and ESA’s Technology Transfer Programme Office to bring ESA engineers and industry together to exchange knowhow. Here, the company was inspired to spin off a smart service helping horticulturalists to fertilise plants better on Earth.

Triggered by the requirement to provide for the needs of humans on long missions to the Moon and Mars, ESA’s Micro-Ecological Life Support System Alternative (MELiSSA) project focuses on a ‘closed’ life support system, where all supplies are reused and recycled. So, for example, organic waste and carbon dioxide should be entirely converted into oxygen, water and food.

“MELiSSA recognises that we have to develop a self-supporting system for long missions, as astronauts will not be able to rely on regular deliveries of supplies, especially as they move further from Earth,” explains ESA’s Christel Paille.

“One key issue is food and water supplies. Astronauts will need to grow their own food with limited resources, and reclaim as much water as possible from that growth cycle. Hence it’s vital that we develop a scheme that tells them exactly the right amount of fertiliser to apply at every stage in the plant growth.”

SPIN-OFF FROM RESEARCH AS IF IN SPACE

Based on its initial experiments, and the results it gained from growing vegetables in closed and well-controlled environments conceptually as if in space, the company developed a scheme for horticulturists, this time with the goal of maximising plant growth and yield through very careful use of fertilisers.

In the service now offered to growers, samples are taken every week of both the fertiliser solution dripped into the plants – including tomatoes, peppers, cucumbers, eggplant, roses and gerbera – and the liquid that drains away.

These are analysed at the company’s laboratory and the results sent back to the growers, with advice on any changes they should make to the amounts of each of the 16 minerals given to the plants.

“There is a separate approach for each mineral, but these are also linked with each other because the uptake of certain minerals, such as potassium, magnesium and calcium, are closely related,” says Lex.

“The amount of each mineral that a plant needs also varies across its lifecycle. It will need a different combination when it is producing stalks and leaves early in its life compared with when it is producing flowers and fruit.”

Horticulturalists also face challenges in altering fertiliser doses to match changing growing conditions. For example, rising energy prices have encouraged growers to keep greenhouse windows closed. However, this causes higher humidity, resulting in a fall in evaporation from plants.

That, in turn, makes it harder for tomato plants to transport calcium to the top of the plant, which can result in a condition that leaves and the plant top becomes necrotic”.

The company’s scheme shows growers how to compensate for this by altering not just the amount of calcium in the drop water, but also magnesium and potassium levels.

Photo: Hot house tomatoes (Copyright D. van der Lans (CC BY-NC-ND 2.0))

Photo: To study the optimal dosing of minerals for growing tomato and pepper plants, Dutch Groen Agro Control built an enclosed system in which the plants received doses of 16 different minerals. The doses of each mineral were extremely carefully controlled, so that as little as possible ends up unused in the drain water. (Copyright Groen Agro Control)

PRODUCTION INCREASE

In less than one season, Dutch customer Zwingrow has already started to see positive results from using the scheme for its crop of orange bell peppers.

“We’re always trying to improve the health and quality of the plants we grow, but using this weekly analysis means we are acting proactively, delving deeper into the needs of the plants and getting better results,” says Ted Zwinkels, co-owner of Zwingrow.

“Even though we started using it after the start of the season last year, the plants grew better and were healthier. I’d estimate that overall production increased by around 5%.

“It’s impossible to know how much of this was due to the new regime, as variations in sunlight from year to year also play a part.

“However, already this season, using the service from the very start, we’ve seen stronger, better plants, and fewer vulnerable ones.”

Groen Agro Control now has clients across the world. While it still has plans for experiments on crop growth in space, it is also widening its horizons on Earth, including a potential service for crops grown outside using drop water application of fertilisers, such as asparagus.

Source: European Space Agency

 

Read more

Comments

No comments to display.

Related posts

Continental free trade area to boost e-commerce in Africa

High-level session at UNCTAD's Africa eCommerce Week shows that the continent has the potential to scale e-commerce enterprises - but its new free trade area will be key.

Bayer helps farmers keep sows healthy with new BCS SowDition smartphone application

BCS SowDition enables accurate and standardized body condition scoring of sows in four simple steps, contributing to better health and management.

Call for applications: 2019 Syngenta Crop Challenge in Analytics prize

Corn is one of the world’s most important crops. Each year, breeders create several new corn products, known as experimental hybrids. Corn breeders work to create corn hybrids that can maintain high yield across a wide range of environments.
Application Deadline in a month

Application of the IoT technologies in the poultry chain

The growth of poultry relies on the environment in which the bird feels comfortable, as well as on good-quality feed and water. In this use case, the performance of the poultry production chain is optimised through IoT driven technologies.

New Initiative to Mitigate Risk for Global Solar Scale-up

The World Bank and Agence Française de Développement (AFD) are developing a joint Global Solar Risk Mitigation Initiative (SRMI), an integrated approach to tackle policy, technical and financial issues associated with scaling up solar energy deployment, especially in some of the world’s poorest countries.

Challenges and opportunities of introducing Internet of Things and Artificial Intelligence applications into Supply Chain Management

The study examines the challenges and opportunities of introducing Artificial Intelligence (AI) and the Internet of Things (IoT) into the Supply Chain Management (SCM). This research focuses on the Logistic Management. The central research question is “What are the key challenges and opportunities of introducing AI and IoT applications into the Supply Chain Management?”

Internet of Robotic Things – Converging Sensing/Actuating, Hyperconnectivity, Artificial Intelligence and IoT Platforms

The Internet of Things (IoT) concept is evolving rapidly and influencing new developments in various application domains, such as the Internet of Mobile Things (IoMT), Autonomous Internet of Things (A-IoT), Autonomous System of Things (ASoT), Internet of Autonomous Things (IoAT), Internet of Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc. that are progressing/advancing by using IoT technology.

3D Food Printers Market Driven by Growing Demand for Customized Food

The 3D food printers market is expected to grow at a robust CAGR from 2017 to 2028. This market growth is expected to be driven by factors such as the growing demand for customised food and the development of the industrial sector in this region.

Vision-Based Apple Classification for Smart Manufacturing

In this paper, an accurate data capture approach based on a vision sensor is proposed. Three image recognition methods are studied to determine the best vision-based classification technique, namely Bag of Words (BOW), Spatial Pyramid Matching (SPM) and Convolutional Neural Network (CNN).

Intel Drone Solutions Modernize and Increase Efficiency for US Bridge Inspections

Intel collaborated with two departments of transportation to improve bridge inspections, supplementing manual inspections of the Daniel Carter Beard Bridge connecting Ohio and Kentucky and the Stone Arch Bridge in Minnesota. Throughout the inspections, Intel’s advanced automated commercial drone hardware and software solutions increased efficiency and produced more reliable data in a fraction of the time and cost of traditional methods.