Specific Challenge

To build a strongly networked European Quantum Technologies (QT) community around the common goals defined in the Strategic Research Agenda. To create the European ecosystem that will deliver the knowledge, technologies and open research infrastructures and testbeds necessary for the development of a world-leading knowledge-based industry in Europe, leading to long-term economic, scientific and societal benefits. To move advanced quantum technologies from the laboratory to industry with concrete prototype applications and marketable products while advancing at the same time the fundamental science basis, in order to continuously identify new applications and find better solutions for solving outstanding scientific or technology challenges.

Scope

A. Research and Innovation Actions

Proposals are expected to address a mix of quantum technology challenges addressing one or more of the following areas, integrating different aspects like physics, engineering, computer science, theory, algorithms, software, manufacturing, control, infrastructures, etc. Each activity should clearly move the technology up the TRL scale. For areas a. to d., proposals can integrate various activities covering the whole value chain, from fundamental to applied research, and with other types of activity, including demonstrators, etc., as appropriate.

a. Quantum Communication: Development of state-of-the art network devices, applications and systems (memories, quantum repeaters, network equipment, high throughput miniaturised quantum random number generators, etc.) for quantum communication mesh-networks. Proposals should target cost-effective solutions, devices and systems compatible with existing communication networks and standard cryptography systems, as well as device-independent protocols. Each proposal should address aspects like engineering, protocols, certification, software, algorithms. Actions should include validation of the proposed solution, proof of its suitability for the targeted application and benchmarking with respect to relevant targets set by the CSA in this area.

b. Quantum Computing Systems: The development of open quantum computer experimental systems and platforms, integrating the key building blocks such as quantum processors (>10qubits) with limited qubit overhead, control electronics, software stack, algorithms, applications, etc. Work should address the scalability towards large systems (>100 qubits), the verification and validation of the quantum computation, fault-tolerance and solving a concrete computational problem to demonstrate the quantum advantage. Projects should foresee benchmarking activities. Benchmarks will be identified by the CSA for all the platforms selected in this area.

c. Quantum Simulation: Proposals should aim at delivering operational demonstrators, based on existing physical platforms that have shown a clear perspective to achieve more than 50 interacting quantum units and / or full local control. They should work towards demonstrating a certified quantum advantage for solving difficult scientific or industrial problems (e.g. material design, logistics, scheduling, machine learning, optimisation, artificial intelligence, drug discovery, etc.). The proposed solutions need to include the development of protocols, validation schemes and control, simulation software, system configuration and optimisation. Work should address the scalability towards larger systems with more qubits. Projects should foresee benchmarking activities related to real life applications. Benchmarks will be identified by the CSA for all the platforms selected in this area. Hybrid architectures are also to be considered under this area when relevant.

d. Quantum Metrology and Sensing: Quantum sensors for specific application areas such as imaging, healthcare, geo-sciences, outdoor and indoor navigation, time or frequency, magnetic or electrical measurements, etc. … as well as novel measurement standards, making use of the advances in controlling the fundamental quantum properties. It is expected that the work will lead to practical sensing devices, imaging systems and quantum standards that employ quantum coherence and outperform classical counterparts (resolution, stability) targeting TRL 3 and 4 and showing potential for further miniaturisation/integration into industrial systems.

e. Fundamental science: Research and development of basic theories and components, addressing a foundational challenge of relevance for the development of quantum technologies in at least one of the four areas a.-d. described above, to improve the performance of the components or subsystems targeted in those areas. Proposals must clearly indicate how they support a challenge for one or more of these areas.

For areas a. to d., proposals should be based on a close cooperation between academia and industry, define output and impact KPIs, include technology benchmarking against other approaches, and include user requirements.

For areas a. to c. above, proposals should seek synergies with relevant national / regional research and innovation programmes running in these areas. They shall clearly specify how they are connected to the programmes and / or how they will incorporate the platforms, testbeds and infrastructures existing in Europe, how they will attract and build communities around them for openly promoting further technology developments as well as testing and benchmarking in the field and how they build on top of these to create European added value. Proposals combining different sources of financing should include a concrete financial plan detailing the use of these funding sources for the different parts of their activities.

The Commission considers that proposals for Research and Innovation Actions of a 3-year duration and requesting a contribution from the EU up to EUR 10 million would allow the areas a. to d. to be addressed appropriately; and proposals requesting a contribution from the EU between EUR 2 and 3 million would allow the area e. to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals of another duration and/or requesting other amounts.

When appropriate, proposals may provide financial support to third parties established in a EU member state or country associated with Horizon 2020 and in line with the conditions set out in General Annex K, for example to access specific expertise or infrastructure. The consortium will define the selection process of third parties for which financial support will be granted (with a maximum of EUR 100 000 per party). A maximum of 10% of the EU funding requested by the proposal should be allocated to this purpose.

All projects shall make provisions to actively participate in the common activities of the Quantum Flagship and in particular: coordinate technical work with the other selected projects of the Flagship; and contribute to the activities of the Coordination and Support Action defined under item B. below.

Note that special Grant Conditions will apply for projects granted under this topic.

B. Coordination and Support Action

Proposals should aim at coordinating the relevant stakeholders, notably academia, RTOs and industry participating in the Flagship initiative. In particular, it is expected to establish a communication platform, facilitate dialogue, promote the objectives of the Flagship and monitor the progress, support the governance structure, organize outreach events (including addressing the impact of technology development on economy and society), identify training and education needs and promote European curricula in quantum engineering, identify and coordinate relevant standardisation, IPR actions, and international collaboration and help networking of respective national and international activities in the field. The action will also identify, together with the community, benchmarks for all communication/computing/simulation platforms selected under areas a. to c. of the Research and Innovation Actions described under item A. above.

It is expected that such an activity is driven by the relevant actors of the field including academia, RTOs and industry.

The Commission considers that proposals for Coordination and Support Actions requesting a contribution from the EU of up to EUR 2 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

Expected Impact

A. Research and Innovation Actions

  • Contribute to the strategic objectives of the Flagship;
  • Expand European leadership and excellence in quantum technologies;
  • Scientific breakthroughs that form the basis for future technologies;
  • Synergetic collaboration with existing European platforms and infrastructures;
  • Kick-start a competitive European quantum industry;
  • Availability of open platforms and infrastructures accessible to the European Quantum technologies Community.

B. Coordination and Support Action

  • A well-coordinated European initiative on Quantum Technologies, involving all relevant stakeholders and linked with relevant international, national and regional programmes, while assuring an efficient support to the governance of the Flagship;
  • Spreading of excellence on Quantum Technologies across Europe, increased awareness of European activities and availability of European curricula in the field.

 

Dateline for submission: 20 February 2018

Source: The European Commission

Illustration Photo: We are combining cold-matter and photonic crystal fibres to develop a platform technology for quantum information applications and matter-wave optics. (credits: image courtesy of Professor Andre Luiten adelaide.edu.au/ipas)

Read more

Comments

No comments to display.

Related posts

EU's Call for Proposals: An empowering, inclusive Next Generation Internet

The objective is to support actions on smarter, open, trusted and personalised learning solutions to optimise digital learning and to allow learners to engage and interact with content and with peers.
Application Deadline in 5 months

Singapore to establish Additive Manufacturing Facility and Applications in Maritime Sector

The facility’s location also leverages PSA’s parts supplier base and facility operations to support just-in-time inventory. This move towards digitised inventories reduces the need to hold excess inventory, which lowers storage costs, while shortening turnaround time from weeks to days due to improved availability of spare parts. In the long run, PSA will expand the scope of these services to the wider maritime industry, including ship owners, to help build its business adjacencies.

EU's Call for Proposals: The AQUAEXCEL2020 twelfth call for access

The facilities available cover the entire range of production systems (cage, pond, recirculation, flowthrough, hatchery and disease challenge); environments (freshwater, marine, cold, temperate and warm water); scales (small, medium and industrial scale); fish species (salmonids, cold and warm water marine fish, freshwater fish and artemia); and fields of expertise (nutrition, physiology, health & welfare, genetics, engineering, monitoring & management technologies).
Application Deadline in a month

Environment and Big Data: Role in Smart Cities of India

This study identifies six environmental factors, which should be integrated in the development of smart cities. These environmental factors include indicators of landscape and geography, climate, atmospheric pollution, water resources, energy resources, and urban green space as a major component of the environment.

Corteva Agriscience and IRRI Ink Partnership to Develop Advanced Rice Technologies and Programs

The partnership seeks to improve the genetic outcomes of breeding programs, encourage sustainable rice cultivation, and develop new rice varieties which deliver higher yields and are more resilient against biotic and abiotic stresses.

Call for Applications: Communication projects which mitigate anthropogenic climate change

The Minor Foundation for Major Challenges (MFMC) is inviting applications from all over the world to fund communication projects which mitigate anthropogenic climate change.
Application Deadline in a month

EU's Call for Proposals: Digital technologies for improved performance in cognitive production plants

Proposals need to develop new technologies to realise cognitive production plants, with improved efficiency and sustainability, by use of smart and networked sensor technologies, intelligent handling and online evaluation of various forms of data streams as well as new methods for self-organizing processes and process chains.
Application Deadline in 4 months

Study reveals best use of wildflowers to benefit crops on farms

For the first time, a Cornell University study of strawberry crops on New York farms tested this theory and found that wildflower strips on farms added pollinators when the farm lay within a "Goldilocks zone," where 25 to 55 percent of the surrounding area contained natural lands.

EU's Call for Proposals: Reinforcing the EU agricultural knowledge base

Activities shall analyse and compare the approaches taken on their performance and impact for farmers/foresters as well as effectivity of the communication and information channels used for dissemination in countries and regions.
Application Deadline in 3 months

The Bali Fintech Agenda: A Blueprint for Successfully Harnessing Fintech’s Opportunities

In response to the Bali Fintech Agenda, the World Bank will focus on using fintech to deepen financial markets, enhance responsible access to financial services, and improve cross-border payments and remittance transfer systems.