NUS engineers invent tiny vision processing chip for ultra-small smart vision systems and IoT applications

A team of researchers from the National University of Singapore (NUS) has developed a novel microchip, named EQSCALE, which can capture visual details from video frames at extremely low power consumption. The video feature extractor uses 20 times less power than existing best-in-class chips, and hence requires 20 times smaller battery, and could reduce the size of smart vision systems down to the millimetre range.
a year ago

18 January 2018

Novel video feature extractor uses 20 times less power than existing chips and could reduce the size of untethered vision systems down to the millimetre range

A team of researchers from the National University of Singapore (NUS) has developed a novel microchip, named EQSCALE, which can capture visual details from video frames at extremely low power consumption. The video feature extractor uses 20 times less power than existing best-in-class chips, and hence requires 20 times smaller battery, and could reduce the size of smart vision systems down to the millimetre range. For example, it can be powered continuously by a millimetre-sized solar cell without the need for battery replacement.

Led by Associate Professor Massimo Alioto from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering, the team’s discovery is a major step forward in developing millimetre-sized smart cameras with near-perpetual lifespan. It will also pave the way for cost-effective Internet of Things (IoT) applications, such as ubiquitous safety surveillance in airports and key infrastructure, building energy management, workplace safety, and elderly care.

Photo: Associate Professor Massimo Alioto and his team from NUS Engineering developed a tiny vision processing chip, EQSCALE, which uses 20 times less power than existing technology. (credit: NUS)

“IoT is a fast-growing technology wave that uses massively distributed sensors to make our environment smarter and human-centric. Vision electronic systems with long lifetime are currently not feasible for IoT applications due to their high power consumption and large size. Our team has addressed these challenges through our tiny EQSCALE chip and we have shown that ubiquitous and always-on smart cameras are viable. We hope that this new capability will accelerate the ambitious endeavour of embedding the sense of sight in the IoT, as well as the realisation of the Smart Nation vision in Singapore,” said Assoc Prof Alioto.

Tiny vision processing chip that works non-stop

A video feature extractor captures visual details taken by a smart camera and turns them into a much smaller set of points of interest and edges for further analysis. Video feature extraction is the basis of any computer vision system that automatically detects, classifies and tracks objects in the visual scene. It needs to be performed on every single frame continuously, thus defining the minimum power of a smart vision system and hence the minimum system size.

The power consumption of previous state-of-the-art chips for feature extraction ranges from various milliwatts to hundreds of milliwatts, which is the average power consumption of a smartwatch and a smartphone, respectively. To enable near-perpetual operation, devices can be powered by solar cells that harvest energy from natural lighting in living spaces. However, such devices would require solar cells with a size in the centimetre scale or larger, thus posing a fundamental limit to the miniaturisation of such vision systems. Shrinking them down to the millimetre scale requires the reduction of the power consumption to much lesser than one milliwatt.

The NUS Engineering team’s microchip, EQSCALE, can perform continuous feature extraction at 0.2 milliwatts, 20 times lower in power consumption than any existing technology. This translates into a major advancement in the level of miniaturisation for smart vision systems. The novel feature extractor is smaller than a millimetre on each side, and can be powered continuously by a solar cell that is only a few millimetres in size. 

Assoc Prof Alioto explained, “This technological breakthrough is achieved through the concept of energy-quality scaling, where the trade-off between energy consumption and quality in the extraction of features is adjusted. This mimics the dynamic change in the level of attention with which humans observe the visual scene, processing it with different levels of detail and quality depending on the task at hand. Energy-quality scaling allows correct object recognition even when a substantial number of points of interests are missed due to the degraded quality of the target.”

Next steps

The development of EQSCALE is a crucial step towards the future demonstration of millimetre-sized vision systems that could operate indefinitely. The NUS research team is looking into developing a miniaturised computer vision system that comprises smart cameras equipped with vision capabilities enabled by the microchip, as well as a machine learning engine that comprehends the visual scene. The ultimate goal of the NUS research team is to enable massively distributed vision systems for wide-area and ubiquitous visual monitoring, vastly exceeding the traditional concept of cameras.

 

Source: National University of Singapore (NUS)

Read more

Comments

No comments to display.

Related posts

Call for Applications: Go Green in the City 2019

The Go Green in the City challenge is now entering its 9th year running and our 2019 edition is going to be even bigger, better and bolder! We are looking for students like you from around the world who are willing to put their skills and ideas to the test.
Application Deadline in 4 months

Renewable Energy the Most Competitive Source of New Power Generation in GCC

Under current plans, the region will install 7 gigawatts (GW) of new power generation capacity from renewable sources by the early 2020s

A Glimpse of What Lies Ahead for the Silicon Photonics Market

The global silicon photonics market is expected to account for sales of over $737 million by 2023 growing at a CAGR of 35% during 2018-2023. The silicon photonics finds its major application area to be in the telecommunications with over 69% market share in terms of revenue in 2017.

A Diagnostic Device for In-Situ Detection of Swine Viral Diseases: The SWINOSTICS Project

In this paper, we present the concept of a novel diagnostic device for on-site analyses, based on the use of advanced bio-sensing and photonics technologies to tackle emerging and endemic viruses causing swine epidemics and significant economic damage in farms.

Online security assessment framework helps businesses cope with increased use of personal devices

Employees increasingly access sensitive company data remotely, often from personal devices where social media networks hold a prominent place. Easy targets for cyber criminals? Members of the DOGONA consortium believe so, and they have devised a risk assessment framework to help businesses alleviate this threat.

Proagrica Highlights Top Data Trends for Agribusiness in 2019

For businesses in the supply chain, data solutions can form the backbone of sustainable growth, ensuring robust internal operations that are future-proofed and primed for data integration and insight which presents a potential landscape of dynamic new services and ways of working adding value to both businesses and their customers.

Intel and Alibaba announced the development of athlete tracking technology powered by artificial intelligence

Intel and Alibaba announced on the eve of CES that the companies are teaming to develop athlete tracking technology powered by artificial intelligence (AI) that is aimed to be deployed at the Olympic Games 2020 and beyond. The technology uses existing and upcoming Intel hardware and Alibaba cloud computing technology to power a cutting-edge deep learning application that extracts 3D forms of athletes in training or competition.

Vietnam announced a list of 13 key agricultural products

The Ministry of Agriculture and Rural Development (MARD) has announced a list of 13 key agricultural products of Vietnam.The list includes rice, coffee, rubber, cashew nuts, pepper, tea, vegetables and fruit, cassava and cassava products, pork, meat and eggs, tra fish, shrimp, wood and wood products.

Call for Nominations: World Food Prize Foundation - Food Security and Agricultural Champions

The World Food Prize Foundation is currently accepting nominations for its globally renowned award that recognizes the accomplishments of individuals who have advanced human development by improving the quality, quantity or availability of food in the world. The World Food Prize is the foremost international award recognizing the accomplishments of individuals who have advanced human development by improving the quality, quantity, or availability of food in the world.
Application Deadline in 3 months

7 Blockchain ETFs to invest in

ETFs have been around for a long time and have been used to track benchmark indexes such as the NASDAQ-100, the Standard & Poor’s (S&P) 500, and the US Dow Jones Industrial Average (DJIA). Stock market investors also use these indexes to monitor their portfolio strength as well as compare it with the overall market.